Le mont Olympe

Bienvenue dans le royaume des dieux ...
 
AccueilAccueil  GalerieGalerie  S'enregistrerS'enregistrer  ConnexionConnexion  

Partagez | 
 

 Trou noir ( 2ème partie )

Aller en bas 
AuteurMessage
Tudormint
The poséïdon
The poséïdon
avatar

Masculin
Nombre de messages : 1065
Age : 35
Date d'inscription : 10/11/2007

MessageSujet: Trou noir ( 2ème partie )   Mar 20 Nov - 14:59



Singularité:


Au centre d’un trou noir se situe une région dans laquelle le champ gravitationnel et les distorsions de l’espace (on parle plutôt de courbure de l’espace) deviennent infinis. Cette région s’appelle une singularité gravitationnelle. La description de cette région est délicate dans le cadre de la relativité générale puisque celle-ci ne peut décrire des régions où la courbure devient infinie.

De plus, la relativité générale est une théorie qui ne peut pas incorporer en général des effets gravitationnels d’origine quantique. Or quand la courbure tend vers l’infini, on peut montrer que celle-ci est nécessairement sujette à des effets de nature quantique. Par conséquent, seule une théorie de la gravitation incorporant tous les effets quantiques (on parle alors de gravitation quantique) est en mesure de décrire correctement les singularités gravitationnelles.

La description d’une singularité gravitationnelle est donc pour l’heure problématique. Néanmoins, tant que celle-ci est située à l’intérieur d’un trou noir, elle ne peut influencer l’extérieur d’un trou noir, de la même façon que de la matière située à l’intérieur d’un trou noir ne peut en ressortir. Ainsi, aussi mystérieuses que soient les singularités gravitationnelles, notre incapacité à les décrire, signe de l’existence de limitations de la relativité générale à décrire tous les phénomènes gravitationnels, n’empêche pas la description des trous noirs pour la partie située de notre côté de l’horizon des événements.

Formation des trous noirs:

La possibilité de l’existence des trous noirs n’est pas une conséquence exclusive de la relativité générale : la quasi-totalité des autres théories de la gravitation physiquement réalistes permet également leur existence. La relativité générale, à l’instar de la plupart de ces autres théories de la gravité, non seulement prédit que les trous noirs peuvent exister, mais aussi qu’ils seront formés partout où suffisamment de matière peut être compactée dans une région de l’espace. Par exemple, si l’on compressait le Soleil dans une sphère d’environ trois kilomètres de rayon (soit à peu près quatre millionièmes de sa taille), il deviendrait un trou noir. Si la Terre était compressée dans un volume de quelques centimètres cube, elle deviendrait également un trou noir.

Pour l’astrophysique, un trou noir peut être considéré comme le stade ultime d’un effondrement gravitationnel. Les deux stades de la matière qui, en terme de compacité, précèdent l’état de trou noir, sont ceux atteints par exemple par les naines blanches et les étoiles à neutrons. Dans le premier cas, c’est la pression de dégénérescence des électrons qui maintient la naine blanche dans un état d’équilibre face à la gravité. Dans le second, il ne s'agit pas de la pression de dégénérescence des nucléons, mais de l'interaction forte qui maintient l’équilibre. Un trou noir ne peut se former suite à l'effondrement d'une naine blanche : celle-ci, en s'effondrant initie des réactions nucléaires qui forment des nucléons plus lourds que ceux qui la composent. Ce faisant, le dégagement d'énergie qui en résulte est suffisant pour disloquer complètement la naine blanche, qui explose en supernova dite thermonucléaire (ou de type Ia).

Un trou noir se forme lorsque la force de gravité est suffisamment grande pour dépasser l’effet de la pression, chose qui se produit quand l'astre progéniteur dépasse une certaine masse critique. Dans ce cas, plus aucune force connue ne permet de maintenir l’équilibre, et l’objet en question s’effondre complètement. En pratique, plusieurs cas de figures sont possibles : soit une étoile à neutrons accrète de la matière issue d'une autre étoile, jusqu'à atteindre une masse critique, soit elle fusionne avec une autre étoile à neutron (phénomène a priori beaucoup plus rare), soit le cœur d'une étoile massive s'effondre directement en trou noir.

L’hypothèse de l’existence d’un état plus compact que celui d’étoile à neutrons a été proposée dans le courant des années 1980 ; ce serait celui des étoiles à quarks aussi appelées étoiles étranges en raison du nom donné pour des raisons historiques à certains des quarks constituant l’objet, appelés « quarks étranges. Des indications d’une possible détection indirecte de tels astres ont été obtenues depuis le courant des années 1990, sans trancher pour autant définitivement la question, mais cela ne change rien au fait qu'au delà d'une certaine masse ce type d'astre finisse par s'effondrer en trou noir, seule la valeur de la masse limite change.

En 2006, on distingue quatre grandes classes de trous noirs en fonction de leur masse : les trous noirs stellaires, supermassifs, intermédiaires et primordiaux (ou micro trous noirs). L’existence voire l’abondance de chaque type de trou noir est directement liée à la possibilité de leur formation.

Observation des trous noirs:

Les deux seules classes de trous noirs pour lesquelles on dispose d’observations nombreuses (indirectes, mais de plus en plus précises, voir paragraphe suivant) sont les trous noirs stellaires et supermassifs. Le trou noir supermassif le plus proche est celui qui se trouve au centre de notre galaxie à environ 8 kilo-parsecs.

Une des premières méthodes de détection d’un trou noir est la détermination de la masse des deux composantes d’une étoile binaire, à partir des paramètres orbitaux. On a ainsi observé des étoiles de faible masse avec un mouvement orbital très prononcé (amplitude de plusieurs dizaines de km/s), mais dont le compagnon est invisible. Le compagnon massif invisible peut généralement être interprété comme une étoile à neutrons ou un trou noir puisqu’une étoile normale avec une telle masse se verrait très facilement. La masse du compagnon (ou la fonction de masses, si l’angle d’inclinaison est inconnu) est alors comparée à la masse limite maximale des étoiles à neutrons (environ 3,3 masses solaires). Si elle dépasse cette limite, on considère que l’objet est un trou noir. Sinon, il peut être une naine blanche.

On considère également que certains trous noirs stellaires apparaissent lors des sursauts de rayons gamma (ou GRB, pour gamma-ray burst en anglais). En effet, ces derniers se formeraient via l’explosion d’une étoile massive (comme une étoile Wolf-Rayet) en supernova, et que dans certains cas (décrits par le modèle collapsar), un flash de rayons gamma est produit au moment où le trou noir se forme. Ainsi, un GRB[25] pourrait représenter le signal de la naissance d’un trou noir. Des trous noirs de plus faible masse peuvent aussi être formés par des supernovae classiques. Le rémanent de la supernova 1987A est soupçonné d’être un trou noir, par exemple.

Un deuxième phénomène directement relié à la présence d’un trou noir, cette fois pas seulement de type stellaire, mais aussi supermassif, est la présence de jets observés principalement dans le domaine des ondes radio. Ces jets résultent des changements de champ magnétique à grande échelle se produisant dans le disque d’accrétion du trou noir.



Jet de plasma observé en interférométrie dans la galaxie M87. L’effet est imputé au champ magnétique intense à proximité du trou noir supermassif en rotation situé au centre de la galaxie.


Des astrophysiciens américains ont découvert une paire de trous noirs supermassifs qui vont se heurter l'un à l'autre. Les trous noirs se trouvent au centre d'un amas de galaxies appelé Abel 400. Pour l'instant les deux trous noirs sont éloignées, chacun entouré par un énorme disque d'accrétion formé des restes des étoiles déchirées. Mais pour cette image j'ai imaginé la situation dans le futur, lorsque les trous noirs occuperont un seul disque et seront sur le point de fusionner.

_________________


Que nos planètes prospèrent !!!
Revenir en haut Aller en bas
Voir le profil de l'utilisateur http://poseidonia.forumpro.fr
 
Trou noir ( 2ème partie )
Revenir en haut 
Page 1 sur 1
 Sujets similaires
-
» le trou noir de l'enfer
» Simulation Trou noir ! [11/09 -> 18/09]
» Abracoudabra *fait apparaitre un troue noir*
» Liste des Cartes Interdites maj by nono (01/09/09)
» STOP LES BANS INUTILES !!!!!

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Le mont Olympe :: ESPACE PEDAGOGIQUE :: ESPACE CELESTE :: Trou noir-
Sauter vers: