Le mont Olympe

Bienvenue dans le royaume des dieux ...
 
AccueilAccueil  GalerieGalerie  S'enregistrerS'enregistrer  ConnexionConnexion  

Partagez | 
 

 Trou noir ( 1ère partie )

Aller en bas 
AuteurMessage
Tudormint
The poséïdon
The poséïdon
avatar

Masculin
Nombre de messages : 1065
Age : 35
Date d'inscription : 10/11/2007

MessageSujet: Trou noir ( 1ère partie )   Mar 20 Nov - 14:17

Trou noir


En astrophysique, un trou noir est un objet massif dont le champ gravitationnel est si intense qu’il empêche toute forme de matière ou de rayonnement de s’en échapper. De tels objets n’émettent donc pas de lumière et sont alors noirs. Les trous noirs sont décrits par la théorie de la relativité générale. Ils ne sont pas directement observables, mais plusieurs techniques d’observation indirecte dans différentes longueurs d’onde ont été mises au point et permettent d’étudier les phénomènes qu’ils induisent sur leur environnement. En particulier, la matière qui est happée par un trou noir est chauffée à des températures considérables avant d'être engloutie et émet de ce fait une quantité importante de rayons X. Ainsi, même si un trou noir n'émet pas lui-même de rayonnement, il peut néanmoins être détectable par son action sur son environnement. L'existence des trous noirs est une certitude pour la quasi-totalité de la communauté scientifique concernée (astrophysiciens et physiciens théoriciens).



Image simulée d’un trou noir stellaire situé à quelques dizaines de kilomètres d’un observateur et dont l’image se dessine sur la voûte céleste dans la direction du Grand Nuage de Magellan. L’image de celui-ci apparaît dédoublée sous la forme de deux arcs de cercle, en raison de l’effet de lentille gravitationnelle fort. La Voie lactée qui apparaît en haut de l’image est également fortement distordue, au point que certaines constellations sont difficiles à reconnaître, comme par exemple la Croix du Sud (au niveau de l’étoile orange lumineuse, Gacrux, en haut à gauche de l’image) dont la forme de croix caractéristique est méconnaissable. Une étoile relativement peu lumineuse (HD 49359, magnitude apparente 7,5) est située presque exactement derrière le trou noir. Elle apparaît ainsi sous la forme d’une image double, dont la luminosité apparente est extraordinairement amplifiée, d’un facteur d’environ 4 500, pour atteindre une magnitude apparente de -1,7. Les deux images de cette étoile, ainsi que les deux images du Grand Nuage sont situées sur une zone circulaire entourant le trou noir, appelée anneau d’Einstein.

Présentation et terminologie:

Un trou noir possède une masse donnée, concentrée en un point appelé singularité gravitationnelle. Cette masse permet de définir une sphère appelée horizon du trou noir, centrée sur la singularité et dont le rayon est une limite maximale en deçà duquel le trou noir empêche tout rayonnement de s’échapper. Cette sphère représente en quelque sorte l’extension spatiale du trou noir. Pour un trou noir de masse égale à la masse du Soleil, son rayon vaut environ 3 kilomètres. À une distance interstellaire (en millions de kilomètres), un trou noir n’exerce pas plus d’attraction que n’importe quel autre corps de même masse ; il ne s’agit donc pas d’un « aspirateur » irrésistible. Par exemple, si le Soleil se trouvait remplacé par un trou noir de même masse, les orbites de ses planètes resteraient inchangées.

Il existe plusieurs sortes de trous noirs. Lorsqu’ils se forment à la suite de l’effondrement gravitationnel d’une étoile, on parle de trou noir stellaire. Quand on les trouve au centre des galaxies, ils ont une masse pouvant aller jusqu’à plusieurs milliards de masses solaires et on parle alors de trou noir supermassif (ou trou noir galactique). Entre ces deux échelles de masse, on pense qu’il existe des trous noirs intermédiaires avec une masse de quelques milliers de masses solaires. Des trous noirs de masse bien plus faible, qui auraient été formés au début de l’histoire de l’univers, au Big Bang, sont aussi envisagés, et sont appelés trous noirs primordiaux. Leur existence n’est, à l’heure actuelle, pas confirmée.

Il est difficile d’observer directement un trou noir. Il est cependant possible de déduire sa présence par son action gravitationnelle sur son environnement, notamment au sein des microquasars et des noyaux actifs de galaxies, où de la matière à proximité tombant sur le trou noir va se trouver considérablement chauffée et émettre un fort rayonnement X. Les observations permettent ainsi de déceler l’existence d’objets massifs et de très petite taille. Les seuls objets que ces observations impliquent et qui sont compatibles dans le cadre de la relativité générale sont les trous noirs.



Historique:

Le concept de trou noir a émergé à la fin du XVIIIe siècle dans le cadre de la gravitation universelle d’Isaac Newton. La question était de savoir s’il existait des objets dont la masse était suffisamment grande pour que leur vitesse de libération soit plus grande que la vitesse de la lumière. Cependant, ce n’est qu’au début du XXe siècle et avec l’avènement de la relativité générale d’Albert Einstein que le concept de trou noir devient plus qu’une curiosité. En effet, peu après la publication des travaux d’Einstein, une solution de l’équation d’Einstein impliquant l’existence d’un trou noir central est publiée par Karl Schwarzschild. Les travaux fondamentaux sur les trous noirs remontent aux années 1960, précédant de peu les premières indications observationnelles solides en faveur de leur existence. La première « observation » d’un objet contenant un trou noir fut celle de la source de rayons X Cygnus X-1 par le satellite Uhuru en 1971. Le terme de « trou noir » a émergé, dans le courant des années 1960, par l’intermédiaire du physicien américain Kip Thorne. Auparavant, on utilisait les termes de « corps de Schwarzschild » ou d’« astre occlus ». À noter que le terme de « trou noir » a rencontré des réticences dans certaines communautés linguistiques, notamment francophones et russophones, qui le jugeaient quelque peu inconvenant.

Propriétés:

Un trou noir est un objet astrophysique comme un autre. Il se caractérise par le fait qu’il est très difficile à observer directement, et que sa région centrale ne peut être décrite de façon satisfaisante par les théories physiques en leur état du début du XXIe siècle car elle abrite une singularité gravitationnelle. Cette dernière ne peut être décrite que dans le cadre d’une théorie de la gravitation quantique, manquante à ce jour. Par contre, on sait parfaitement décrire les conditions physiques qui règnent dans son voisinage immédiat, de même que son influence sur son environnement, ce qui permet de les détecter par diverses méthodes indirectes.

Par ailleurs, les trous noirs sont étonnants en ce qu’ils sont décrits par un très petit nombre de paramètres. En effet, leur description, dans l’univers dans lequel nous vivons, ne dépend que de trois paramètres : la masse, la charge électrique et le moment cinétique. Tous les autres paramètres du trou noir (par exemple sa taille ou sa forme) sont fixés par ceux-là. Par comparaison, la description d’une planète fait intervenir des centaines de paramètres (composition chimique, différenciation de ses éléments, convection, atmosphère, etc.). La raison pour laquelle un trou noir n’est décrit que par ces trois paramètres est connue depuis 1967 : c’est le théorème de calvitie démontré par Werner Israel. Celui-ci explique que les seules interactions fondamentales à longue portée étant la gravitation et l’électromagnétisme, les seules propriétés mesurables des trous noirs sont données par les paramètres décrivant ces interactions, à savoir la masse, le moment cinétique et la charge électrique.

Pour un trou noir, la masse et la charge électrique sont des propriétés habituelles que décrit la physique classique: le trou noir possède un champ gravitationnel proportionnel à sa masse et un champ électrique proportionnel à sa charge. L'influence du moment cinétique est par contre spécifique à la relativité générale. Celle-là stipule en effet qu'un corps en rotation va avoir tendance à « entraîner » l'espace-temps dans son voisinage. Ce phénomène, non encore observé à l'heure actuelle dans le système solaire en raison de son extrême faiblesse pour des astres non compacts, est connu sous le nom d'effet Lense-Thirring (aussi appelé frame dragging, en anglais). Il prend une amplitude considérable au voisinage d'un trou noir en rotation, au point qu'un observateur situé dans son voisinage immédiat serait inévitablement entraîné dans le sens de rotation du trou noir. La région où ceci se produit est appelée ergorégion.



Le trou et le noir…

L’existence des trous noirs est envisagée dès le XVIIIe siècle. Il s’agissait alors d’objets prédits comme tellement denses que leur vitesse de libération était supérieure à la vitesse de la lumière — c’est-à-dire que même la lumière ne peut vaincre leur force gravitationnelle. Plutôt qu’une telle force (qui est un concept newtonien), il est plus juste de dire que la lumière subit en fait un décalage vers le rouge infini. Ce décalage vers le rouge est d’origine gravitationnelle : la lumière perd la totalité de son énergie en essayant de sortir du puits de potentiel d’un trou noir. Ce décalage vers le rouge est donc d’une nature quelque peu différente de celui dû à l’expansion de l’univers, que l’on observe pour les galaxies lointaines et qui résulte d’une expansion d’un espace ne présentant pas de puits de potentiels très profonds. De cette caractéristique provient l’adjectif « noir », puisqu’un trou noir ne peut émettre de lumière. Ce qui est valable pour la lumière l’est aussi pour la matière : aucune particule ne peut s’échapper d’un trou noir une fois capturée par celui-ci, d’où le terme de « trou » fort approprié.

Horizon des événements:

La zone qui délimite la région d’où lumière et matière ne peuvent s’échapper, est appelée «horizon des événements». On parle parfois de « surface » du trou noir, quoique le terme soit quelque peu impropre (il ne s’agit pas d’une surface solide ou gazeuse comme la surface d’une planète ou d’une étoile). Il ne s’agit pas d’une région qui présente des caractéristiques particulières : un observateur qui franchirait l’horizon ne ressentirait rien de spécial à ce moment-là (voir ci-dessous). Par contre, il se rendrait compte qu’il ne peut plus s’échapper de cette région s’il essayait de faire demi-tour. C'est une sorte de point de non retour. En substance, c’est une situation qui est un peu analogue à celle d’un baigneur qui s’éloignerait de la côte. Si par exemple le baigneur ne peut nager que deux kilomètres, il ne ressentira rien s’il s’éloigne à plus d’un kilomètre de la côte. Par contre, s’il fait demi-tour, il se rendra compte qu’il n’a pas assez d’énergie pour atteindre la rive.

En revanche, un observateur situé au voisinage de l’horizon remarquera que le temps s’écoule différemment pour lui et pour un observateur situé loin du trou noir. Si ce dernier lui envoie des signaux lumineux à intervalles réguliers (par exemple une seconde), alors l’observateur proche du trou noir recevra des signaux plus énergétiques (la fréquence des signaux lumineux sera plus élevée, conséquence du décalage vers le bleu subi par la lumière qui tombe vers le trou noir), et les intervalles de temps séparant deux signaux consécutifs seront plus rapprochés (moins d’une seconde, donc). Cet observateur aura donc l’impression que le temps s’écoule plus vite pour son confrère resté loin du trou noir que pour lui. À l’inverse, l’observateur resté loin du trou noir verra son collègue évoluer de plus en plus lentement, le temps chez celui-ci donnant l’impression de s’écouler plus lentement.

Si l’observateur distant voit un objet tomber dans un trou noir, les deux phénomènes de dilatation du temps et de décalage vers le rouge vont se combiner. Les éventuels signaux émis par l’objet seront de plus en plus rouges, de moins en moins lumineux (la lumière émise perd de plus en plus d’énergie avant d’arriver à l’observateur lointain), et de plus en plus espacés. En pratique, le nombre de photons reçus par l’observateur distant va décroître très rapidement, jusqu’à devenir nul : à ce moment-là l’objet en train de chuter dans le trou noir est devenu invisible. Même si l’observateur distant tente d’approcher l’horizon en vue de récupérer l’objet qu’il a eu l’impression de voir s’arrêter juste avant l’horizon, celui-ci demeurera invisible.

Pour un observateur s’approchant d’une singularité, ce sont les effets de marée qui vont devenir importants. Ces effets, qui déterminent les déformations d’un objet (le corps d’un astronaute, par exemple) du fait des inhomogénéités du champ gravitationnel, seront inéluctablement ressentis par un observateur s’approchant de trop près d’un trou noir ou d’une singularité. La région où ces effets de marée deviennent importants est entièrement située dans l’horizon pour les trous noirs supermassifs, mais empiète notablement hors de l’horizon pour des trous noirs stellaires[12]. Ainsi, un observateur s’approchant d’un trou noir stellaire serait déchiqueté avant de passer l’horizon, alors que le même observateur qui s’approcherait d’un trou noir supermassif passerait l’horizon sans encombre. Il serait par contre inéluctablement détruit ensuite par les effets de marée.




_________________


Que nos planètes prospèrent !!!
Revenir en haut Aller en bas
Voir le profil de l'utilisateur http://poseidonia.forumpro.fr
 
Trou noir ( 1ère partie )
Revenir en haut 
Page 1 sur 1
 Sujets similaires
-
» le trou noir de l'enfer
» Simulation Trou noir ! [11/09 -> 18/09]
» 1ère partie avec les eldars noirs contre du tau 1000pts mes impressions
» Abracoudabra *fait apparaitre un troue noir*
» Liste des Cartes Interdites maj by nono (01/09/09)

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Le mont Olympe :: ESPACE PEDAGOGIQUE :: ESPACE CELESTE :: Trou noir-
Sauter vers: